

ОПТИМИЗАЦИЯ НА ПРОЦЕСИТЕ НА ОБОГАТЯВАНЕ НА РУДАТА, КАТО ЧАСТ ОТ НАМАЛЯВАНЕ НА ЕКСПЛОАТАЦИОННИ РАЗХОДИ

инж. Иван К. Кунчев, инж. Красимир Л. Динеков, инж. Иванка Т. Котова, инж. Тереза Х. Колева

Елаците-Мед АД е водеща минна компания в България, осъществяваща открит добив и първична преработка на медно-порфирни златосъдържащи руди от находище "Елаците" в близост до Етрополе, а добитата руда се преработва в Обогатителния комплекс край с. Мирково. Двата комплекса са технологично свързани с уникалния и единствен на Балканския полуостров тунел с гуменотранспортна лента, с дължина 6,7 km, минаващ под Стара планина.

През последните 20 години на територията на двата комплекса са внедрени иновативни проекти и дигитализация, в това число системи за автоматизация; подмяна на действащо оборудване; глобални системи за позициониране; системи за минно планиране; за мониторинг, наблюдение и контрол на стабилитета. Внедрените нови технологии и иновации увеличават ефективността на производството, което дава възможност да се оползотворяват бедни руди с 35% по-ниски гранични съдържания на мед от тези в миналото.

Находище "Елаците" се разработва по открит способ. При експлоатацията му се добива минна маса - откривка и руда. Добитата руда се преработва посредством процеси по пробивно-взривни работи, товарене и транспортиране с автосамосвали, насипообразуване на откривката, едро трошене и транспорт на рудата до Обогатителния комплекс.

В Обогатителния комплекс технологията на преработка на рудата е съставена от няколко етапа – рудоподготовка, последващо обогатяване на рудата, обезводняване и филтрация, както и складиране на продуктите от обогатяването – концентрат и отпадък.

1. РУДОПОДГОТОВКА

Осъществява се в три стадия на трошене и смилане на рудата. Едрото трошене е от страната на Рудодобивния комплекс, предвид технологията на добив на рудата с големина на късовете 1000 -0 mm. Вторият и третият стадий на трошене е на територията на Обогатителния комплекс.

1.1. СРЕДНО ТРОШЕНЕ;

Реализираната схема включва: предварително пресяване; надситовият продукт постъпва на трошене в конусни трошачки и контролно пресяване на натрошения продукт.

Подситовите продукти от предварително и контролно пресяване представляват готов продукт за смилане. Надситовият продукт от контролно пресяване постъпва на ситно трошене с последващо контролно пресяване. Подситовият продукт е готов за смилане. Средното трошене се реализира в четири трошачни линии, в които постъпващата от склада руда се натрошава до едрина 60-0 mm. От времето на пуска на предприятието поетапно се извършва подмяна на трошачките с нови модификации на фирма "TISSEN KRUPP", като първоначално е въведена модификацията "Кубрия" 210/35 на първите три потока, останалият четвърти се подмени през 2005 година с по-нова модификация М 210, която се отличава от предишните с по-голяма производителност. През 2016 и 2022 г. се подмениха и на останалите два потока, също с новата модификация М 210. За сравнение на производителността са представени в таблица 1 руските, от времето на пуска на предприятието, КСД 2200 и двете модификации на "TISSEN KRUPP.

Таблица 1

Тип	Производителност	По краен продукт
КСД 2200	150 t/h	160 - 250 t/h
KUBRIA 210-35*	300 t/h	300 t/h
KUBRIA M210	550 t/h	650 t/h

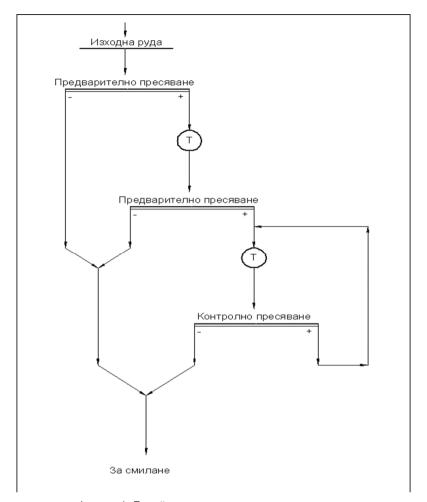
Предварителното пресяване на четирите потока се осъществява на двудънни сита, като от него се отделя около 20-25% готов продукт за смилане с 98% съдържание на класа "минус" 15 mm. Натрошената от трошачките руда постъпва на контролно пресяване в двудънни сита. Подситовият продукт, посредством система от гумено-транспортни ленти, се подава за смилане, а надситовия продукт, също посредством гумено-транспортни ленти, постъпва към ситно трошене. За периода системно са подменяни вибрационните сита с нови модификации.

1.2. СИТНО ТРОШЕНЕ

Ситното трошене се осъществява в девет трошачни линии. След натрошаването се извършва контролно пресяване на натрошената руда, което гарантира необходимата едрина за следващия процес - смилане. Подситовият продукт се транспортира към междинен склад за следващия процес - смилане, а надситовият се връща за повторна преработка в стадий "Ситно трошене". За същия период, до момента, са подменени всички трошачки КМДТ 2200 с модификации 2100 F, F 210 и 210-15. Монтираната F 210 на пета трошачна линия, в случай на ремонт в средното трошене, изпълнява нейните функции. През останалото време работи като трошачка от ситно трошене. Развитието на тази гъвкава схема позволи цялостната подмяна и реконструкциите на фундаментите на трите трошачки от средното трошене за новите модификации от типа М 210. По този начин с минимално намаление на количествата преработвана руда се изпълниха в срок тежките ремонти и производството беше възстановено на плановите показатели.

След приключването на тези два ремонта на ключови машини и оборудване, веднага се пристъпи към реконструкцията и подмяната на останалата от времето на пуска на фабриката руска трошачка КМДТ 2200 с новата модификация на "Тисен Круп" – F210 на тринадесета линия от ситното трошене.

С въвеждането на трошачката в експлоатация е реализирана и нова концепция за управление и визуализация, базирана на контролери SIMATIC S7-1500 интегрирани в TIA Portal - платформа на Siemens и отдалечена периферия, осигуряваща децентрализацията на компонентите и инсталирането им в непосредствена близост до датчици и изпълнителни механизми. Това от своя страна довежда до намаляване на разходите по окабеляване, по-голяма сигурност и бързо действие при управление.


След успешното реализиране на новата платформа на поток 13, на преминаване към виртуализиране на сървъри и операторски станции, изграждащи системата за управление на технологичния процес в цех ССТ, поетапно ще преминат всички потоци и линии към новата структура на управление.

В следващата таблица 2 е представено сравнение на производителността на трошачките от ситно трошене от най-старите към най-новите модификации.

Таблица 2

Тип	Производителност	Краен продукт
КМДТ 2200	160 t/h	180 t/h
KUBRIA 210-15*	200 t/h	200 t/h
KUBRIA2100F	400 t/h	250 t/h

Линейната схема на процеса на трошене и пресяване е показана на фигура 1.

Фигура 1: Линейна схема на трошене и пресяване

Всички ремонти се изпълниха в срок и в пълен обем, като не оказаха съществено влияние върху технологичните показатели. Всички ремонти са част от генералната програма, следвана от дружеството с цел осигуряване и преработване на планираните количества руда.

Постигнатата тенденция за подобряване на технологичните показатели на ССТ се дължи на:

- Подмяна на остарелите трошачки с ново поколение немски трошачки с хидравлично регулиране, поддържане и защита на разтоварващия отвор. Последните се характеризират с по-голяма енергийна напрегнатост на зоната на трошене. Монтирани са вибрационни сита с две и една пресевни повърхности с голяма работна площ и използването на качествени пресевни повърхности с голямо живо сечение, което гарантира висока ефективност на пресяване.
- Изградената система за централно управление на ССТ, която е пусната месец март 2013 г. и е непрекъснато надграждана, позволява да се сведе до минимум времето за пускане и спиране на потоците в цеха и да се поддържа автоматично, в оптимални граници, натоварването на машините.
- Подмяна на двигателите на вибрационните сита в цех ССТ с нови, с клас на енергийна ефективност IE3.

Наблюдава се трайна тенденция към намаляване едрината на натрошената руда за смилане.

Преди възстановяване на контролно пресяване в ситно трошене, съдържанието клас +15 мм в натрошената руда за 2000 г. е 21,20%. За последните години този важен показател е: за 2021 г. - 2,80% и за 2022 г. - 2,86%. От 2017 г. се отчита като технологичен показател следващата по-ниска класа "минус" 12,5 mm, като за последните посочени години се движи в границите 92 - 94%.

Средна часова производителност на средно и ситно трошене за 2020 г. е 2040 t/h, за 2021 г. – 2083t/h и за 2022 г. е 2192 t/h.

Относителният разход на електроенергия на тон руда намалява, а часовият се изменя в тесни граници. За 2020 г. е 2,66 kWh/t и 5415,45 kWh/h, за 2021 г. – 2,65 kWh/t и 5510,61 kWh/h и за 2022 г. разходът е 2,47 kWh/t и 5391,36 kWh/h.

По този начин общата производителност на процес трошене достигна 2200 t/h, спрямо 1699 t/h. през 2011 г. Съответно разходът на консумираната електроенергия от цех Средно и Ситно Трошене се понижи с 6,96%, като същевременно се повиши производителността с 5,22% за 2022 г. спрямо 2021 г.

Данните са представени в таблица 3.

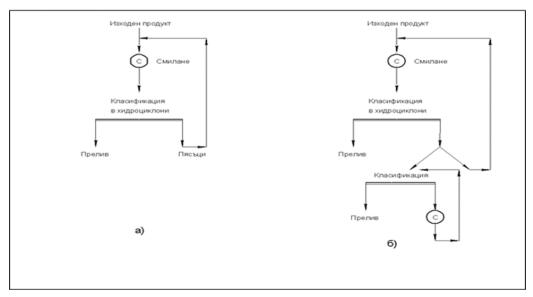
Таблица 3

Година / Месец	Преработено количество руда цех ССТ [t.]	Средна класа +15mm. цех ССТ [%]	Месечно работно време цех ССТ [h]	Средна продължителност на престоите цек ССТ [h]	Средно натоварване на ГГЛ МБ1 по количество руда цек ССТ [t/h]	Среден месечен коеф. на движение Средно Трошене [%]	Среден месечен коеф. на движение Ситно Трошене [%]	Месечен разход на електроенергия цех ССТ [kWh]	Месечен разход електроенергия / преработено количество руда цех ССТ [КМh/t]	Месечно средно натоварване - преработено количество руда/работни часове цех ССТ [t/h]
2011	12 963 159	5,21	636,22	3,91	1 714	82,67%	80,53%	36 841 821	2,84	1 699
2020	16 074 170	0,79	656,74	2,47	2 061	86,52%	83,47%	42 678 710	2,66	2 040
2021	17 109 656	2,80	684,78	1,56	2 085	89,74%	88,49%	45 282 946	2,65	2 083
2022	17 211 656	2,86	654,96	2,52	2 191	86,19%	79,58%	42 373 328	2,47	2 192
022 /2020	1 137 486	2	-2	0,06	130	0	0	-305 382	0	152
% разлика	7,08	264,63	-0,27	2,30	6,32	-0,38	-4,66	-0,72	-7,20	7,43
2022/2021	102 000	0	-30	1	106	0	0	-2 909 618	0	109
% разлика	0,60	2,45	-4,36	62,22	5,09	-3,96	-10,08	-6,43	-6,96	5,22

Всички мероприятия, проведени по оптимизирането на цялостния процес на трошене чрез намаляване на едрината на подаваната към Средно и Ситно трошене руда, подмяна на оборудване и контрол на технологичните параметри, са енергийно ефективни, като позволяват по-голяма преработка на руда при намалено енергопотребление.

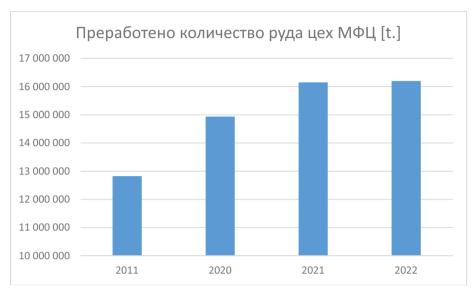
На графика 1 е представена преработената руда от цех ССТ за последните три години.

Графика 1


На графика 2 е представена разходът на електроенергия спрямо часовото количество преработена руда.

Графика 2

1.3. СМИЛАНЕ


Следващият процес по рудоподготовка е смилането, като реализираната схема е едностадиална, с класификация на пулпа от мелниците в хидроциклон. Преливът от хидроциклона е готов продукт за флотация, а пясъците се връщат за досмилане в мелницата. Принципната схема на смилане е показана на следващата фигура №2.

Фигура 2

С цел повишаване на производителността, пясъците от хидроциклоните на мелница №2 или мелница №3 се подават към втора мелница от отделението за досмилане. /фиг.2-б/.

През последните години са въведени две нови мелници в производството, една през 2006 и последната през 2021 г. На графика 3 е показана преработената руда за последните три години, сравнени с 2011 година.

Графика 3

В следващата графика 4 е показан относителният разход на електроенергия [kWh/t] спрямо средната часова производителност на мелниците, като се отчита намаляване на относителния разход на електроенергия от 18,52 [kWh/t] за 2011 г., към 16,06 [kWh/t] за 2022 г. Също така, увеличаването на средната часова производителност на мелничните агрегати от 135 [t/h] за 2011 г., на 158 [t/h] през 2022 г.

Графика 4

През 2018 г. са внедрени нов тип зърнометрични анализатори на всяка мелница, които отчитат непрекъснато съдържанието на фракции +0,212 mm и - 0,075 mm.

В последните години е изцяло подменена информационно-управляващата система на всички мелнични агрегати за дистанционно пускане и управление на процеса "смилане", в която са включени зърнометричните анализатори. Показатели, които се следят и управляват са:

- количество руда за смилане;
- вода в мелницата;
- плътност на пулта за хидроциклониране, като се отчита водата в зумпфа;
- налягане на входа на хидроциклона;
- обем на прелива на хидроциклона;
- натоварване на електродвигателя на мелницата за отчитане на износването на топковия товар;
 - нивото на прелива в зумпфа като критерий за управление на помпата;
 - съдържание на разчетните класове + 0,212 mm и -0,075 mm.

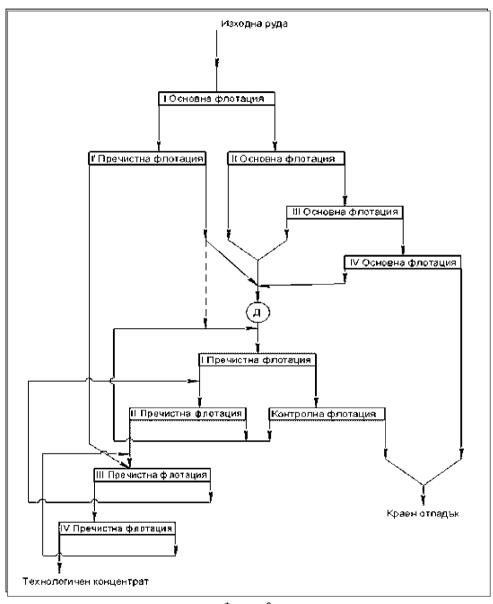
В зависимост от приетия режим на работа може да се поддържа:

- постоянна плътност на входа на хидроциклона;
- постоянна зърнометрия на смилане;
- постоянно количество руда за смилане.

Въз основа на предприетите мероприятия по внедряване на нови агрегати и много добър контрол на технологичните параметри се постига увеличаване на преработената руда и намаляване на относителният разход на електроенергия за смилане. През 2021 г. са подменени двигатели на помпите на Мелничните агрегати с нови енергийно ефективни от класа IE3, с цел повишаване на енергийната ефективност на цех МФЦ.

Основните материални разходи в този процес са електроенергия и стоманени топки, като за последните три години преработената руда се повиши с 1 262 000 тона, след въвеждането на още една мелница, при запазване на относителния разход на електроенергия за смилане [kWh/t] и намаляване на разхода на топки. Данните се намират в следващата таблица 4.

Таблица 4


Година / Месец	Преработено количество руда цех МФЦ [t.]		Месечна себестойност - електроенергия / работни часове [kWh/h]	Разход на топки на тон руда цех МФЦ [gr/t]	
2020	14 938 356	16,20	2 562	0,623	
2021	16 149 798	16,01	2 527	0,633	
2022	16 200 354	16,06	2 539	0,621	
2022 /2020	1 261 998	-0,140	-23	-0,002	
% разлика	8,45	-0,87	-0,88	-0,34	
2022/2021	50 556	0,053	12	-0,012	
% разлика	0,31	0,33	0,47	-1,87	

Най-големият консуматор на електроенергия не само в ОК, но и в цялото предприятие е цех МФЦ. Консумираната от него електроенергия представлява 76.5% от консумацията на Обогатителния комплекс и 71.0% от консумацията на цялото предприятие.

2. ОБОГАТЯВАНЕ НА РУДАТА

Разработената и реализирана схема на флотация "C-S" е класическа за преработване на медни руди с ниско съдържание на ценния компонент при минимални капиталовложения за строителство и експлоатация. Дългият период на експлоатация на отделението показва добри технологични и икономически показатели

Реализираната схема е открито циклова, с досмилане на грубия колективен концентрат от основна флотация и последователно пречистване в три или четири пречистни операции, като първа пречистна флотация има контролна флотация, от която излиза краен отпадък. Линейната схема е показа на фигура 3.

Фигура 3

При тази схема извличането се формира в основна флотация, а качеството на крайния концентрат - в пречистните операции. Машините за четирите реда от основна флотация и пречистките са "Денвер" 500 и "Денвер" 300.

В края на 2019 г., с повишаването на преработваната руда, се въведе в експлоатация още един нов ред флотационни машини на OUTOTEC, с обем на клетките 30 м³. Пенният продукт от първите четворки на основна флотация, без да минава през досмилане, се подава на самостоятелно пречистване в една шест камерна машина "Денвер 300 V", изпълняваща ролята на първа пречистка. В зависимост от съдържанието на мед, полученият пенен продукт може да се подава в трета пречистка или директно за сгъстяване, а камерният се обединява с пенния продукт от вторите четворки и шестици на основна флотация, като има възможност да се обедини с камерния от втора пречистка.

Реализирана по този начин, схемата създава условия за по-голяма гъвкавост при водене на флотационния процес. Основното ѝ предимство е разтоварването на първа пречистна флотация, респективно намаляване на загубите от извличане в пречистния цикъл. Второто голямо предимство се състои в това, че в случай на нужда, тази флотационна машина може да се използва за провеждане на втора пречистка и заедно с четвърта пречистка, може да поеме функциите на втора и трета пречистка.

По този начин през 2021 г. се подмени поетапно и цялостно носещата конструкция и основно на машините на втора, трета и четвърта пречистка.

От началото на 2022 г. в Елаците-Мед започна цялостната подмяна и реконструкция на носещата конструкция на първа пречистка - 4-ти флотационен ред в Мелнично-флотационен цех в Обогатителния комплекс на дружеството.

Този ред е от изключителна важност за цялостния производствен процес, предвид невъзможността друг ред да изпълнява неговите функции. През годините 4-ти ред е ремонтиран в движение, но никога досега оборудването не е обновявано основно.

Преди да започнат ремонтните дейности, се изпълниха предварителни мероприятия и реконструиране на 5-ти флотационен ред, така че да може, след спирането на 4-ти ред, да изпълнява функциите му през времето на ремонта.

След подмяната на машините и подмяна на носещите конструкции на редовете, бяха подменени и двигателите на всички машини с нови по-енергийно ефективни от класа IE 3. Оптимизира се работата на компресорната станция, осигуряваща сгъстен въздух, необходим за протичането на флотационният процес.

Въпреки тежките ремонти на ключови машини и оборудване, производството работеше на плановите показатели. Данните за основните технологични показатели са показани в таблица 5.

% 2 Тодина / Месец Съдържание в к-т,[%] Шисти Съдържание Си в Гранодиорити [%] Дайки Извличане [%] Съдържание руда,[%] Съдържание Съдържание 91,18 2020 21,70 73,06 16,54 0,318 10,41 2021 0,304 21,95 91,62 71,20 22,68 6,07 0,300 91,70 31,58 4,58 2022 21,79 63,83 2022 /2020 -0,018 -5,822 0,090 0,519 -9,225 15,048 % разлика -5,79 0,41 0,57 -12,63 90,99 -55,95 2022/2021 -0,004 0,085 -7,367 8,909 -1,484 % разлика

Таблица 5

Постигнат е ръст в извличането при запазване на съдържанието на мед в концентрата, въпреки намаляването на съдържанието на мед в преработваната руда. Особено важно е, че през изминалата година съотношението на вместващите скали в постъпващата шихта на рудата е увеличеният процент на дайките, за сметка на намаляване на процента на гранодиорит, който е основен носител на медните минерали. Контролирането на шихтата на рудата, подавана от Рудодобивния комплекс е в тясна връзка с различната електроенергия за смилане на трите вида вместващи скали. Специфичният разход на електроенергия за смилане [kWh/t] се запази в границите на този показател, спрямо предишните години /табл. 5/

Промяната, в съотношението на вместващите скали, наложи използването на нови ксантогенати с по-висока въглеводородна верига, като към момента амиловият ксантогенат е заменен с изоамилов и хексилов ксантогенат. В зависимост от съотношението на вместващите скали, съдържанието на желязо и сяра в постъпващата руда предопределя употребата на един от двата ксантогената. За по-висока селективност и поддържане на високото качество на концентрата се

използва и етилов ксантогенат в началато на процеса. Във флотацията основният материален разход е разходът на реагенти, който се следи ежечасно, като се дозират порционно в определени точки от флотационния процес.

3. ОБЕЗВОДНЯВАНЕ И ФИЛТРАЦИЯ

Полученият след флотация технологичен меден концентрат, в зависимост от съдържанието на молибден в рудата, може да следва два пътя: да продължи към сгъстяване и филтрация, след които се получава краен товарен концентрат; и вторият път е, след сгъстявяне, да захрани молибденовата флотация. При тази селективна флотация, провеждана в инертна среда, след промяна на рН и използването на други реагенти, се получава кондиционен молибденов концентрат със съдържание на молибденов дисулфид над 45 %, съдържание на мед под 0,5%, а технологичният меден концентрат, който се явява отпадък за молибденовата флотация, постъпва на сгъстяване и последваща филтрация за получаване на краен товарен концентрат. Заменени са барабанните филтри с ниска производителност с нови филтър преси – вертикална и хоризонтална, с производителности над 40 т/ч.

4. ДЕПОНИРАНЕ НА ОТПАДЪКА

Отпадъкът от флотационния процес, се депонира в хвостохранилище "Бенковски 2", което е разделено на два участъка – "Ай дере" и "Сулуджа дере". На практика двата участъка работят независимо един от друг и може да се каже, че самото хвостохранилище е съставено от две отделни такива. Технологията на депониране е чрез хидроциклониране на пулпа и разделянето му на пясъци, от които се изгражда опорната призма на хвостовата стена и остатъчен слив, насочван за утаяване в чашата на езерото. След утаяване на хвоста в двете чаши на хвостохранилището, чрез Плаваща помпена станция /ППС/, намираща се в опашката на съответното езеро /"Ай дере" или "Сулуджа дере"/, избистрените води се насочват обратно до събирателна водна кула, откъдето по напорен тръбопровод се довежда до резервоарите за оборотна вода на Обогатителния комплекс. Средногодишно около 95 % оборотна вода се използва в цялостния процес, останалите 5% се дължат на свежа вода от язовир за собствени нужди. Цех ВХС е третият най-голям консуматор на електроенергия в ОК. През последните две години се подмениха помпите за доставяне на оборотна вода към резервоарите с нови по-мощни, осигуряващи равномерно подаване. Двигателите на помпите също бяха подменени с нови енергийно ефективни от класа IE3.

От края на 2022 г. в централна подстанция на обогатителната фабрика е въведена в експлоатация система ABP /автоматично превключване на резерв/, която гарантира непрекъсната енергийна осигуреност на Обогатителния комплекс. Въз основа на нея се намалиха аварийните отпаданията на високоволтовото захранване на обогатителната фабрика и от 87,4 часа престои на машините, средногодишно за 2022 г., на 100% пълна енергийна осигуреност и работно време за всички цехове през първите шест месеца на 2023 г.

В съответствие с въведеният ISO 50001:2018 г. стандарт и като голям енергиен консуматор, "Елаците-Мед" АД управлява множество производствени процеси, протичащи основно на електрическа енергия. Следенето и управляването на използваната електроенергия е от изключителна важност за предприятието. Поради големия брой производствени процеси и тяхната специфика е необходимо да се следят и голям брой показатели – технически, технологични и такива, характеризиращи потреблението. За да се отчете взаимното влияние на отделните цехове по технологичния поток и да се премахне влиянието на количеството рудна маса в междинните складове е прието това обединяване на цеховете в една обща технологична линия, като за краен продукт, обединяващ всичките цехове, е избран количество преработена руда.

При изчисление на показателите за енергийна характеристика на технологичната линия се отбелязва намаление с 2.03% на разхода на електроенергия, което се дължи на подпомагаето за облекчаване на работния процес в цех МФЦ от останалите цехове. По този начин генерираната икономия в технологичната линия, ще има най-голям принос за предприятието. Предприятието стриктно следи своите Показатели за енергийна характеристика (ПЕХ) и редовно променя Базовата си линия след въвеждане на значимо оборудване.